Stability of an additive functional equation in the spaces of generalized functions
نویسنده
چکیده
as the equation for the spaces of generalized functions. Making use of the fundamental solution of the heat equation we solve the general solutions and the stability problems of this equation in the spaces of tempered distributions and Fourier hyperfunctions. Moreover, using the regularizing functions, we extend these results to the space of distributions. 2000 MSC: 39B82; 46F05.
منابع مشابه
Approximately generalized additive functions in several variables via fixed point method
In this paper, we obtain the general solution and the generalized Hyers-Ulam-Rassias stability in random normed spaces, in non-Archimedean spaces and also in $p$-Banach spaces and finally the stability via fixed point method for a functional equationbegin{align*}&D_f(x_{1},.., x_{m}):= sum^{m}_{k=2}(sum^{k}_{i_{1}=2}sum^{k+1}_{i_{2}=i_{1}+1}... sum^{m}_{i_{m-k+1}=i_{m-k}+1}) f(sum^{m}_{i=1, i...
متن کاملApproximation of an additive mapping in various normed spaces
In this paper, using the fixed point and direct methods, we prove the generalized Hyers-Ulam-Rassias stability of the following Cauchy-Jensen additive functional equation: begin{equation}label{main} fleft(frac{x+y+z}{2}right)+fleft(frac{x-y+z}{2}right)=f(x)+f(z)end{equation} in various normed spaces. The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias’ stability theorem t...
متن کاملOn Approximate Solutions of the Generalized Radical Cubic Functional Equation in Quasi-$beta$-Banach Spaces
In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the generalized radical cubic functional equation[ fleft( sqrt[3]{ax^3 + by^3}right)=af(x) + bf(y),] where $a,b in mathbb{R}_+$ are fixed positive real numbers, by using direct method in quasi-$beta$-Banach spaces. Moreover, we use subadditive functions to investigate stability of the generaliz...
متن کاملApproximate additive and quadratic mappings in 2-Banach spaces and related topics
Won{Gil Park [Won{Gil Park, J. Math. Anal. Appl., 376 (1) (2011) 193{202] proved the Hyers{Ulam stability of the Cauchy functional equation, the Jensen functional equation and the quadraticfunctional equation in 2{Banach spaces. One can easily see that all results of this paper are incorrect.Hence the control functions in all theorems of this paper are not correct. In this paper, we correctthes...
متن کاملApproximately generalized additive functions in several variables
The goal of this paper is to investigate the solutionand stability in random normed spaces, in non--Archimedean spacesand also in $p$--Banach spaces and finally the stability using thealternative fixed point of generalized additive functions inseveral variables.
متن کاملStability of generalized QCA-functional equation in P-Banach spaces
In this paper, we investigate the generalizedHyers-Ulam-Rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{Z}-{0,pm1}$) in $p-$Banach spaces.
متن کامل